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Information feedback loops between CTMs and
observations: data assimilation and targeted meas.
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Assimilation adjusts O, predictions considerably at
4pm EDT on July 20, 2004

Observations: circles, color coded by O; mixing ratio
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Model predictions are in better agreement with
observations after assimilation
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The smallest Hessian eigenvalues (vectors)
approximate the principal error components

First Second Third Fourth Fifth
MH) 7.54e-25 1.15e-23 4.04e-23 8.47e-23 1.42e-22
(V2 ‘P)l ~ cov(y°)
yO , y0 ~ y MP) 1.33e+24 8.70e+22 2.48e+22 1.18e+22 7.04e+21
STD 47 3 0.87 0.41 0.25
(ppb)
(a) 3D view (5ppb) (b) East view (c) Top view
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4D-Var Data Assimilation of TES (Satellite) Ozone
Profile Retrievals with GEOS-Chem

g ¢ 0 o ¢ 1 2 5 10 [v/]

Plots from difference between background ozone field and analysis ozone field through TES
profile retrievals for 2006 summertime GEOS-Chem data
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Validation of GEOS-Chem Background and Analysis
Against IONS Ozonesonde Profiles
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Ensemble-based chemical data assimilation can
complement variational techniques
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Covariance inflation and localization are necessary to
compensate for small ensemble size

Covariance inflation: 20r

= Prevents filter divergence
= Additive

= Multiplicative

= Model-specific
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Covariance localization:

= Limit long-distance
correlations according to
NMC empirical ones

A (Observations
Deterministic (0.24/0.28)
——4D-Var (0.52/0.29)
EnKF (0.59/0.32)
—LEnKF (0.88/0.32)

Altitude [grnd points]
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Correction localization: 40 60 80 100 120
O, [ppbv]

= Limit increments away from

observations Ozonesonde S2 (18 EDT, July 20, 2004)
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LENKF assimilation of emissions and boundaries
together with the state can improve the forecast

Ground level ozone at 14 EDT, July 21, 2004 (in forecast window)

LEnKF (R?=0.88/0.32)
[state only]

LEnKF (R?=0.88/0.42)
[state + emissions + boundary]
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4D-Var Features

Pros:

m considers all observations within one assimilation window at
the same time

m generates analysis that is consistent with the system dynamics
Cons:

m assumes constant background covariance matrix at the
beginning of each assimilation window

m requires building the adjoint model
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EnKF Features

Pros:
m simple concept, easy implementation
m updates system states and covariance
m no adjoint model required

Cons:
m non-smooth analysis state flow

m sampling error is large in large-scale models
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Questions

m Can we better understand the relationship between variational
and ensemble based methods for data assimilation?

m Can we use this understanding to build hybrid assimilation
methods that combine the strengths of both approaches?
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Hybrid Approach for Error Covariance Update

m Problem: The background error covariance matrix is kept
constant between 4D-Var assimilation windows.

m Solution: Update the error covariance matrix at the end of
each assimilation window.
m Procedure:
m Explore the 4D-Var error reduction directions.
m Generate a space spanned by the error reduction.
m Project the ensemble background perturbation on the
orthogonal complement of the space.
m The background ensemble runs can be performed in parallel
with 4D-Var without incurring a significant computational
overhead.
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Background Ensemble Generation

m Generate a set of Nens normally distributed perturbations
with mean zero and covariance By:

AxP(to) € N(0,By,), i=1,... Nens.
m Construct a background ensemble of size Nens:
xP(to) = xP(to) + AxP, i=1,..., Nens .

m Propagate this ensemble to the end of the assimilation
window.

xP(t1) = Myt (xP(t0)), i=1,..., Nens

m Compute the mean x?(t;) and background ensemble
perturbation:
AxP(tr) = xP(t1) — x°(t1)
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Subspace of Error Reduction

m 4D-Var optimization generates iterates
Xé") ; X](_J) = My—n (X(g")), j=1...k

m The space spanned by the normalized 4D-Var increments

NONINCES
e,

J=1,.0k

m Orthogonal projector onto the orthogonal complement of Uy,:

Py = 11— U, U]
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Hybrid Ensemble Generation

m Projected ensemble:
AXip(tl) = PtlAX,b(tl)

m Karhunen-Loéve decomposition of approximate Hessian
inverse leads to approximate analysis perturbation:

d
1= Z)\J'W,'WJ-T, Hess Zgj\/—WJ, fj S N(O 1).
=1

m Hybrid ensemble:

Axl(tr) = AxP(te) + DxIess(tr).
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Hybrid Covariance Matrix

m Compute hybrid ensemble covariance matrix:

Bl =
tF v/ Nens — 1
m Localize hybrid ensemble covariance matrix:
Bl =p® By

m Updated background covariance through a convex
combination of the static background covariance By and the
hybrid covariance B[’F as:

A, =a-By+(1—a)- Bl

tg
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Numerical Tests on Lorenz 96 Model

_:_Xj—l(Xj—2_Xj+1_Xj)+F7 ./:17407

periodic boundary conditions, F = 8.0.

The background covariance By, is constructed from a 3%
perturbation of the initial state, and a correlation distance of
L=1.5:

. li —Jj| .
Bto(lv./):o-i'o-j'exp<_ 12 >7 Ia./:]-u"'740'
The observation covariance matrix is diagonal from a p = 1%
perturbation from the mean observation values. The observation
operator H captures only a subset of 30 model states, which
includes every other state from the first 20 states plus the last 20

states.
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Analysis RMS Error Comparison
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Figure: Analysis RMSE comparison for seven assimilation windows, using
different background covariance matrices (static and hybrid covariances
with localization length L = 5, and blending factor o = 0.2; P is
projection only, P+H is projection with Hessian enhancement).
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How Similar are 4D-Var and EnKF? Analysis Assumptions

For xo € N(xg,IB%o). A linear, invertible model solution operator
M advances the state from tg to tr,

X(t[:) =M- X(to) .

The mean background state and the background covariance at tg

are
xB=M-xE, Br=M-By-MT .

A set of noisy measurements taken at tg (a single 4D-Var
assimilation window).

YF=H-xp+er, er e N(O,RF).
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How Similar are 4D-Var and EnKF? Analysis Result

Proposition:

If the model is linear and invertible; the errors are Gaussian; and
observations are taken at a single time at the end of the
assimilation window;

Then the numerical solution obtained by (imperfect, preconditioned)
4D-Var is equivalent to that obtained by the EnKF method
with a small number of ensemble members.
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The Analysis Motivates a Hybrid Approach

Run a short window 4D-Var, and perform K + 1 iterations.
The space spanned by the direction increments has an
orthonormal basis

Vit VK

H Generate EnKF ensemble of K members. Replace the random
sample from the normal distribution with K directions from
the 4D-Var increment subspace (properly scaled).

Run EnKF for longer time.

A Re-generate directions by another short window 4D-Var, and
repeat.
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Tests with the Nonlinear Lorenz Model

Figure: Solution comparison (with 10 ensemble members) for the first
two components of the Lorenz state vector. Hybrid EnKF uses 4D-Var
directions obtained from 0.2 time units. 16/18



Tests with the Nonlinear Lorenz Model
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Figure: RMSE comparison for 10 ensemble members. Hybrid EnKF uses
4D-Var directions obtained from 0.2 time units. Errors shown are
averages of 1000 runs.
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Summary

m Can we better understand the relationship between variational
and ensemble based methods for data assimilation?

m Can we use this understanding to build hybrid assimilation
methods that combine the strengths of both approaches?

Hybrid approach to improve background covariance
Hybrid filter based on 4D-Var directions
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